A valence bond study of the dioxygen molecule
نویسندگان
چکیده
The dioxygen molecule has been the subject of valence bond (VB) studies since 1930s, as it was considered as the first "failure" of VB theory. The object of this article is to provide an unambiguous VB interpretation for the nature of chemical bonding of the molecule by means of modern VB computational methods, VBSCF, BOVB, and VBCI. It is shown that though the VBSCF method can not provide quantitative accuracy for the strongly electronegative and electron-delocalized molecule because of the lack of dynamic correlation, it still gives a correct qualitative analysis for wave function of the molecule and provides intuitive insights into chemical bonding. An accurate quantitative description for the molecule requires higher levels of VB methods that incorporate dynamic correlation. The potential energy curves of the molecule are computed at the various VB levels. It is shown that there exists a small hump in the PECs of VBSCF for the ground state, as found in previous studies. However, higher levels of VB methods dissolve the hump. The BOVB and VBCI methods reproduce the dissociation energies and other physical properties of the ground state and the two lowest excited states in very good agreement with experiment and with sophisticated MO based methods, such as the MRCI method.
منابع مشابه
Coadsorption of Dioxygen and Carbon Monoxide on a Mg(100) Surface
The activation of carbon monoxide by oxygen on Mg(100) surface has been investigated by X-ray photoelectron spectroscopy (XPS). Carbon monoxide is only weakly adsorbed (dispersion-type forces) on a magnesium surface. The XPS result has shown that the dissociation of carbon monoxide leading to the formation of a metastable surface carbonate species occurs through the participation of an oxyg...
متن کاملB3LYP Study on Reduction Mechanisms from O2 to H2O at the Catalytic Sites of Fully Reduced and Mixed-Valence Bovine Cytochrome c Oxidases
Reduction mechanisms of oxygen molecule to water molecules in the fully reduced (FR) and mixed-valence (MV) bovine cytochrome c oxidases (CcO) have been systematically examined based on the B3LYP calculations. The catalytic cycle using four electrons and four protons has been also shown consistently. The MV CcO catalyses reduction to produce one water molecule, while the FR CcO catalyses to pro...
متن کاملModifications on the hydrogen bond network by mutations of Escherichia coli copper efflux oxidase affect the process of proton transfer to dioxygen leading to alterations of enzymatic activities.
CueO has a branched hydrogen bond network leading from the exterior of the protein molecule to the trinuclear copper center. This network transports protons in the four-electron reduction of dioxygen. We replaced the acidic Glu506 and Asp507 residues with the charged and uncharged amino acid residues. Peculiar changes in the enzyme activity of the mutants relative to the native enzyme indicate ...
متن کاملDioxygen activation and bond cleavage by mixed-valence cytochrome c oxidase.
Elucidating the structures of intermediates in the reduction of O2 to water by cytochrome c oxidase is crucial to understanding both oxygen activation and proton pumping by the enzyme. In the work here, the reaction of O2 with the mixed-valence enzyme, in which only heme a3 and CuB in the binuclear center are reduced, has been followed by time-resolved resonance Raman spectroscopy. The results ...
متن کاملDensity functional theory study of the adsorption of NO2 molecule on Nitrogen-doped TiO2 anatase nanoparticles
Adsorption of NO2 molecule on pristine and N-doped TiO2 anatase nanoparticles have been studied using the density functional theory (DFT) technique. The structural properties (such as bond lengths and bond angles) and the electronic properties (such as density of states, band structures and atomic partial charges) have been computed for considered nanoparticles. The result...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of computational chemistry
دوره 28 1 شماره
صفحات -
تاریخ انتشار 2007